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Small ion trap quantum simulators such as that
reported here may soon reach this milestone with
technical upgrades in the hardware, including
lower vacuum chamber pressures to prevent col-
lisions with the background gas, better stability of
the optical intensities, and higher optical power
so that fluctuations in the beam inhomogeneities
can be suppressed.
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Kepler-62: A Five-Planet System
with Planets of 1.4 and 1.6 Earth
Radii in the Habitable Zone
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We present the detection of five planets—Kepler-62b, c, d, e, and f—of size 1.31, 0.54, 1.95,
1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and
267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super–Earth-size
(1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively
receiving 1.2 T 0.2 times and 0.41 T 0.05 times the solar flux at Earth’s orbit. Theoretical models
of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could
be solid, either with a rocky composition or composed of mostly solid water in their bulk.

Kepler is a NASA Discovery-class mission
designed to determine the frequency of
Earth-radius planets in and near the hab-

itable zone (HZ) of solar-like stars (1–6). Planets
are detected as “transits” that cause the host star to
appear periodically fainter when the planets pass
in front of it along the observer’s line of sight.
Kepler-62 [Kepler Input Catalog (KIC) 9002278,
Kepler Object of Interest (KOI) 701] is one of about

170,000 stars observed by the Kepler spacecraft.
On the basis of an analysis of long-cadence photo-
metric observations from Kepler taken in quarters
1 through 12 (13 May 2009 through 28 March
2012), we report the detection of five planets or-
biting Kepler-62, including two super–Earth-size
planets in the HZ as well as a hot Mars-size planet
(Fig. 1 and Table 1). Before validation, three of
these objects were designated as planetary candi-

dates KOI-701.01, 701.02, and 701.03 in the Kepler
2011 catalog (7) and the Kepler 2012 catalog (8).
KOI-701.04 and 701.05 were subsequently iden-
tified using a larger data sample (9).

Analysis of high-resolution spectra indicates
that Kepler-62 is a K2V spectral type with an
estimated mass and radius (in solar units) of
0.69 T 0.02 M⊙ and 0.63 T 0.02 R⊙ (9). Exam-
ination of the sky close to Kepler-62 showed the
presence of only one additional star that con-
tributed as much as 1% to the total flux (figs. S3
and S4) (9). Warm-Spitzer observations (fig. S9)
and the analysis of centroid motion (table S1)
were consistent with the target star as the source
of the transit signals (Fig. 1 and fig. S1). We com-
puted the radius, semimajor axis, and radiative
equilibrium temperature of each planet (Table 1)
on the basis of light curve modeling given the
derived stellar parameters (table S3).

The masses of the planets could not be di-
rectly determined using radial velocity (RV) mea-
surements of the host star because of the planets’
low masses, the faintness and variability of the
star, and the level of instrument noise. In the
absence of a detected signal in the RV measure-
ments (9), we statistically validated the plane-
tary nature of Kepler-62b through -62f with the
BLENDER procedure (10–13) by comparing the
probability of eclipsing binaries and other false-
positive scenarios to bona fide transiting planet
signals (14–18).

To systematically explore the different types
of false positives that can mimic the signals, we
generated large numbers of synthetic light curves
that blend together light from multiple stars and
planets over a wide range of parameters, and then
compared each blend with the Kepler photom-
etry (Fig. 2). We rejected blends that resulted in
light curves inconsistent with the observations.
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We then estimated the frequency of the allowed
blends by taking into account all available ob-
servational constraints from the follow-up obser-
vations discussed in (9). Finally, we compared this
frequency with the expected frequency of true
planets (planet “prior”) to derive the odds ratio
(9). By incorporating these constraints into aMonte
Carlomodel that considered awide range of stellar
and planetary characteristics, we determined es-
timates of the probability of each false positive
that could explain the observations (9).

Our simulations of each of the candidates in-
dicate that the likelihood of a false-positive ex-
planation is much smaller than the likelihood that
the candidates constitute a planetary system. The
calculated odds ratios that Kepler-62b through
-62f represent planets rather than false positives
are 5400, >5000, 15,000, 14,700, and >5000, re-
spectively (9). There is also a 0.2% chance that
the planets orbit a widely spaced binary composed
of two K2V stars; if so, the planets are larger
in radius than the values shown in Table 1 by a
factor of

ffiffiffi

2
p

(9).
To determine whether a planet is in the HZ,

we calculated the flux of stellar radiation that it
intercepts. It is convenient to express intercepted
flux in units of the average solar flux intercepted
by Earth, denoted by S⊙. The values of the stel-
lar flux intercepted by Kepler-62b to -62f are
70 T 9 S⊙, 25 T 3 S⊙, 15 T 2 S⊙, 1.2 T 0.2 S⊙,
and 0.41 T 0.05 S⊙, respectively. Eccentric planetary
orbits increase the annually averaged irradiation
from the primary star by a factor of 1/(1 – e2)1/2,

where e is the orbital eccentricity (19). Because
the model results for the orbital eccentricities of
Kepler-62b through -62f are small and consistent
with zero, no corrections were made.

The HZ is defined here as the annulus around
a star where a rocky planet with a CO2-H2O-N2

atmosphere and sufficiently large water content
(such as on Earth) can host liquid water on its

solid surface (20). In this model, the locations of
the two edges of the HZ are determined on the
basis of the stellar flux intercepted by the planet
and the assumed composition of the atmosphere.
A conservative estimate of the range of the HZ
(labeled “narrow HZ” in Fig. 3) is derived from
atmospheric models by assuming that the
planets have H2O- and CO2-dominated atmo-
spheres with no cloud feedback (21). The flux
range is defined at the inner edge by thermal
runaway due to saturation of the atmosphere by
water vapor and at the outer edge by the freeze-
out of CO2. In this model, the planets are as-
sumed to be geologically active and climatic
stability is provided by a mechanism in which
atmospheric CO2 concentration varies inversely
with planetary surface temperature.

The “empirical” HZ boundaries are defined
by the solar flux received at the orbits of Venus
and Mars at the epochs when they potentially
had liquid water on their surfaces. Venus and
Mars are believed to have lost their water at
least 1 billion years and 3.8 billion years ago,
respectively, when the Sun was less luminous.
At these epochs, Venus received a flux of 1.78 S⊙
and Mars a flux of 0.32 S⊙ (20). The stellar
spectral energy distributions of stars cooler than
the Sun are expected to slightly increase the ab-
sorbed flux (20). Including this factor changes
the HZ flux limits to 1.66 and 0.27 S⊙ for the em-
pirical HZ, and 0.95 and 0.29 S⊙ for the narrow
HZ (21). Figure 3 shows that Earth and Kepler-
62f are within the flux boundaries of the narrow
HZ, whereas Kepler-22b and Kepler-62e are
within the empirical flux boundaries.

Although RVobservations were not precise
enough to measure masses for Kepler-62e and
-62f, other exoplanets with a measured radius
below 1.6 R⊕ have been found to have densities
indicative of a rocky composition. In particular,
Kepler-10b (22), Kepler-36b (23), and CoRoT-7b
(24) have radii of 1.42 R⊕, 1.49 R⊕, and 1.58 R⊕
and densities of 8.8, 7.5, and 10.4 g/cm3, respec-
tively. Thus, it is possible that both Kepler-62e
and -62f (with radii of 1.61 R⊕ and 1.41 R⊕) are
also rocky planets.

The albedo and the atmospheric character-
istics of these planets are unknown, and there-
fore the range of equilibrium temperatures (Teq)
at which the thermal radiation from each plan-
et balances the insolation is large and depends
strongly on the composition and circulation of
the planets’ atmospheres, their cloud charac-
teristics and coverage, and the planets’ rota-
tion rates (25, 26). However, for completeness,
values of Teq were computed from Teq = Teff
[b(1 – AB)(R*/2a)

2]1/4, where Teff is the effec-
tive temperature of the star (4925 K), R* is the
radius of the star relative to the Sun (0.64), AB is
the planet Bond albedo, a is the planet semimajor
axis, and b is a proxy for day-night redistribution
(1 = full redistribution, 2 = no redistribution). For
the Markov chain Monte Carlo calculations, it was
assumed that b = 1 and that AB is a random num-
ber from 0 to 0.5 (Table 1).
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Fig. 1. Kepler-62 light curves after the data
were detrended to remove the stellar varia-
bility. Composite of phase-folded transit light
curves (dots), data binned in ½ hour intervals
(blue error bars), and model fits (colored curves)
for Kepler-62b through -62f. Model parameters
are provided in Table 1. The error bars get larger
as the period becomes larger because there are
fewer points to bin together. For the shortest pe-
riods, the bars are too small to see.
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Gravitational interactions between Kepler-62e
and -62f are too weak (9) to cause nonlinear var-
iations in the times of transits (27, 28) and thereby
provide estimates of their masses. Nevertheless,
upper limits (95th percentile) for Kepler-62e and
-62f were derived (table S4): 150M⊕ and 35M⊕,

respectively. The smallest upper limit to the mass
of Kepler-62e based onRVobservations (table S4)
gives 36 M⊕. These values confirm their plane-
tary nature without constraining their composi-
tion. Despite the lack of a measured mass for
Kepler-62e and -62f, the precise knowledge of

their radii, combined with estimates of their Teq
and the stellar age (~7 billion years), imply that
Kepler-62e and -62f have lost their primordial or
outgassed hydrogen envelope (29, 30). There-
fore, Kepler-62e and -62f are Kepler’s first HZ
planets that could plausibly be composed of

Fig. 2. BLENDER good-
ness-of-fit contours for
Kepler-62b, c, d, e, and
f corresponding to the
threedifferent scenar-
ios that contribute to
the overall blend fre-
quency. (A to E) Back-
ground eclipsing binaries.
(F to J) Background or
foreground stars tran-
sited by a planet. (K toO)
Physical companions tran-
sited by a planet. Viable
blends must be less than
~5.0 magnitudes [(A) to
(E)] or ~5.5 magnitudes
[(F) to (J)] fainter than
Kepler-62 (dashed line).
Only blends inside the
solid white contour match
the Kepler light curve
within acceptable limits
(3s, where s is the sig-
nificance level of the c2

difference compared to a
transit model fit). Lighter-
colored areas (red, orange,
yellow) mark regions of
parameter space giving
increasingly worse fits to
the data (4s, 5s, etc.)
and correspond to blends
that we consider to be
ruled out. The cyan cross-
hatched areas indicate re-
gions of parameter space
that we have ruled out
because the resulting r-Ks
color of the blend is ei-
ther too red (left) or too
blue (right), relative to the
measured color, by more
than 3s (0.15 mag). The
green hatched regions
indicate blends that are
ruled out because the in-
truding stars are less than
3.5 magnitudes fainter
than the target and would
be so bright that they
would have been detected
spectroscopically. Finally,
the thin gray area at the
left of (D), (I), and (N)
rules out stars on the ba-
sis of our Spitzer obser-
vations (fig. S8) (9). The
likelihood of a false pos-
itive for each planetary candidate is derived from the integration of the area that remains within the 3s boundary that is not eliminated by the
hatched areas.
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condensable compounds and be solid, either as
a dry, rocky super-Earth or composed of a sub-
stantial amount of water (most of which would
be in a solid phase because of the high internal
pressure) surrounding a silicate-iron core.

We do not know whether Kepler-62e and
-62f have a rocky composition, an atmosphere,
or water. Until we get suitable spectra of their at-
mospheres, we cannot determine whether they are
in fact habitable. With radii of 1.61 and 1.41 R⊕,
respectively, Kepler-62e and -62f are the smallest
transiting planets detected by the Kepler mission
that orbit within the HZ of any star other than
the Sun.
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Fig. 3. Comparison of
known HZ exoplanets
withmeasured radii less
than 2.5 R⊕ to the so-
lar system planets. The
sizes of the circles indi-
cate the relative sizes of
the planets to each other.
The dashed and solid lines
indicate the edges of the
narrow and empirical HZ,
respectively.

Table 1. Characteristics of the Kepler-62 planetary system. T0 is the
epoch in mid-transit in barycentric Julian days, P is the period, “depth” is the
percent reduction of the flux during the transits determined from the model fit
to the data, Rp/R* is the ratio of the radius of the planet to the radius of the
star, a/R* is the ratio of the planet’s semimajor axis to the stellar radius, b is
the impact parameter in units of stellar radius, i is the orbital inclination, e cos
w is the product of the orbital eccentricity e and the cosine of the periapse

angle w, a is the planet semimajor axis, Rp is the planet radius, maximum mass
is the upper limit to the mass based on transiting timing and RV observations,
M⊕ is the mass of Earth, and Teq is the radiative equilibrium temperature. The
values of the uncertainties are T1 standard deviation unless otherwise noted.
Values for the maximum mass are for the 95th percentile (9). A second set of
values for the planetary parameters was computed by an independent model
and found to be in good agreement with the listed values.

Parameter Kepler-62b Kepler-62c Kepler-62d Kepler-62e Kepler-62f

T0 (BJD-2454900) 103.9189 T 0.0009 67.651 T 0.008 113.8117 T 0.0008 83.404 T 0.003 522.710 T 0.006
P (days) 5.714932 T 0.000009 12.4417 T 0.0001 18.16406 T 0.00002 122.3874 T 0.0008 267.291 T 0.005
Transit duration (hours) 2.31 T 0.09 3.02 T 0.09 2.97 T 0.09 6.92 T 0.16 7.46 T 0.20
Depth (%) 0.043 T 0.001 0.007 T 0.001 0.092 T 0.002 0.070 T 0.003 0.042 T 0.004
Rp /R* 0.0188 T 0.0003 0.0077 T 0.0004 0.0278 T 0.0006 0.0232 T 0.0003 0.0203 T 0.0008
a/R* 18.7 T 0.5 31.4 T 0.8 40.4 T 1.0 144 T 4 243 T 6
b 0.25 T 0.13 0.16 T 0.09 0.22 T 0.13 0.06 T 0.05 0.41 T 0.14
i 89.2 T 0.4 89.7 T 0.2 89.7 T 0.3 89.98 T 0.02 89.90 T 0.03
e cos w 0.01 T 0.17 –0.05 T 0.14 –0.03 T 0.24 0.05 T 0.17 –0.05 T 0.14
e sin w –0.07 T 0.06 –0.18 T 0.11 0.09 T 0.09 –0.12 T 0.02 –0.08 T 0.10
a (AU) 0.0553 T 0.0005 0.0929 T 0.0009 0.120 T 0.001 0.427 T 0.004 0.718 T 0.007
Rp (R⊕) 1.31 T 0.04 0.54 T 0.03 1.95 T 0.07 1.61 T 0.05 1.41 T 0.07
Maximum mass (M⊕) (9) 9 4 14 36 35
Number of observed transits 171 76 52 8 3
Total SNR 54 8.5 68 31 12
Teq (K) 750 T 41 578 T 31 510 T 28 270 T 15 208 T 11
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